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Criteria

• What characteristics do we expect in a good cruise control system?
• Ultimate tracking error in response to speed command
• Ultimate tracking error in response to disturbance
• Transient response time
• Transient overshoot, undershoot
• Robustness – tolerance to unmodeled dynamics or parameter variation



Cruise Control: derive error response from differential 
equations
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Cruise Control: derive error response using block diagrams
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Observations
 Both transfer functions have same denominator (same poles), 

but different numerators (different zeros)
 When 0 (proportional control) the ultimate error is not zero,

in fact the ultimate error in 
ik

•

• =
response to command is very small, but to 

disturbance is large.
 For stability we can look at either transfer function, but for performance

we need to consider both.
 To evaluate ,  it is helpful top ik k

•

•
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Refine the Control
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Effect of Engine Dynamics
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Effect of Engine Dynamics ~ 2
• Suppose we use the 

slowest controller

• Here we see how the 
response degrades 
when slow engine is 
included, at least it is 
still stable

• Pushing for high 
performance often 
leads to non-robust 
design. 
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Add Feedforward
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Summary
• Any one of the closed loop transfer functions can be used for 

stability analysis (all have same poles)
• Performance analysis usually requires considering two or more 

closed loop transfer functions.
• Ultimate error depends on controller type, e.g. PI controller 

resulted in zero error eventually, but P controller left some 
residual error – nontrivial in the case of disturbance.

• We can choose control parameters to shape transient response 
(locate closed loop poles) – in this special case we used our 
knowledge of 2nd order system behavior.

• The system may be sensitive to model accuracy, including 
neglected dynamics – even to the point of instability.  



Next Steps

• Controlling the ultimate error
• Evaluating closed loop system ‘stability robustness’ – the ability to 

remain stable when the model is uncertain
• Shaping the transient response: closed loop pole location via root 

locus
• Controller design to achieve robust performance
• Other (more direct) methods for shaping transient response
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