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mv=F —mgsin&(t)—cv
V+0.02v=u-9.86

v[m/s]speed (10 m/s=36 km/h=22 miles/hr)

u normalized throttle 0<u <1
@ [rad] roadway slope

driving disturbing

command

force force
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I
Criteria

 What characteristics do we expect in a good cruise control system?
e Ultimate tracking error in response to speed command
e Ultimate tracking error in response to disturbance
* Transient response time
e Transient overshoot, undershoot
 Robustness - tolerance to unmodeled dynamics or parameter variation




Cruise Control: derive error response from differential
equations

Assumptions: ‘proportional’ plus ‘integral’ control, ignore engine dynamics

0(0) K, (7(0)~v(0) ] (7 (5) ()
Define: e(t) =V (t)-v(t)

V+0.02v=u-9.80 = £ +0.026 = —Ui +9.80 +V + 0.02V

t
u(t)=Kk, (V—v(t))+kiI(V—v(r))dr =u=ke+ke
0 e speed error

U 2 Inputs:
6+(0.02+k, )é+ke=9.80+V+0.02v V' speed command
6 road disturbance

(s+0.02) T(s)+ 9.85 o (s)
SZ+(O.02+kp)S+ki Sz+(0.02+kp)s+ki

. Error response
Error response to command to disturbance

E(s)=




Cruise Control: derive error response using block diagrams
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E(s)= 58 o(s), 0(s)=1—> .
s?+(0.02+k, )s+k s

(5+002) :

s+0.02 — — 1 0.7
E(s)= V(s), V(s)==
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Response to unit step disturbance
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Response to unit step command
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I
Observations

e Both transfer functions have same denominator (same poles),

but different numerators (different zeros)

e When k. =0 (proportional control) the ultimate error is not zero,

In fact the ultimate error in response to command is very small, but to
disturbance is large.

e [or stability we can look at either transfer function, but for performance
we need to consider both.

e To evaluate k , k; It Is helpful to make the association

s*+(0.02+k,)s+k < s°+2p0,5+ 5




-
Refine the Control
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Notice that we can specify, p, o, Disturbance response

0.3}
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Effect of Engine Dynamics

Dramatic reduction
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Effect of Engine Dynamics ~ 2

e Suppose we use the
slowest controller

p=0.707, 0, =1 0-61 _ |
* Here we see how the 0.5¢ With slow engine
response degrades 0.4F

when slow engine is

isr’][ﬁ:uschgl’eat least it is gz With ideal engine
e Pushing for high o.1i
performance often - . N

leads to non-robust ol 2 \4 6 8 10 12 1

design.
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Use tilt sensor
(accelerometers) to estimate
roadway slope.
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Slow controller, slow engine
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Summary

* Any one of the closed loop transfer functions can be used for
stability analysis (all have same poles)

 Performance analysis usually requires considering two or more
closed loop transfer functions.

e Ultimate error depends on controller type, e.g. Pl controller
resulted in zero error eventually, but P controller left some
residual error - nontrivial in the case of disturbance.

 We can choose control parameters to shape transient response
(locate closed loop poles) - in this special case we used our
knowledge of 2"d order system behavior.

 The system may be sensitive to model accuracy, including
neglected dynamics - even to the point of instability.




-
Next Steps

e Controlling the ultimate error

e Evaluating closed loop system ‘stability robustness’ - the ability to
remain stable when the model is uncertain

e Shaping the transient response: closed loop pole location via root
locus

e Controller design to achieve robust performance
e Other (more direct) methods for shaping transient response
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